The Constant Voltage Drop (CVD) Model

Q: We know if significant positive current flows through a junction diode, the diode voltage will be some value near 0.7 V . Yet, the ideal diode model provides an approximate answer of $v_{D}=0$ V. Isn't there a more accurate model?

A: Yes! Consider the Constant Voltage Drop (CVD) model.

In other words, replace the junction diode with two devices-an ideal diode in series with a 0.7 V voltage source.

To find approximate current and voltage values of a junction diode circuit, follow these steps:

Step 1 - Replace each junction diode with the two devices of the CVD model.

Note you now a have an IDEAL diode circuit! There are no junction diodes in the circuit, and therefore no junction diode knowledge need be (or should be) used to analyze it.

Step 2-Analyze the IDEAL diode circuit. Determine i_{0}^{i} and v_{0}^{i} for each ideal diode.

IMPORTANT NOTE!!! PLEASE READ THIS CAREFULLY:

Make sure you analyze the resulting circuit precisely as we did in section 3.1. You assume the same IDEAL diode modes, you enforce the same IDEAL diode values, and you check the same IDEAL diode results, precisely as before. Once we replace the junction diodes with the CVD model, we have an IDEAL diode circuit-no junction diodes are involved!

Step 3 - Determine the approximate values i_{0} and v_{0} of the junction diode from the ideal diode values i_{0}^{i} and v_{0}^{\prime} :

Note therefore, if the IDEAL diode (note here I said IDEAL diode) is forward biased ($i_{0}^{i}>0$), then the approximation of the junction diode current will likewise be positive ($i_{0}>0$), and the approximation of the junction diode voltage (unlike the ideal diode voltage of $v_{0}^{i}=0$) will be:

$$
\begin{aligned}
v_{D} & =v_{D}^{i}+0.7 \\
& =0.0+0.7 \\
& =0.7 \mathrm{~V}
\end{aligned}
$$

However, if the IDEAL diode is reversed biased ($i_{o}^{i}=0$), then the approximation of the junction diode current will likewise be zero ($i_{0}=0$), and the approximation of the junction diode voltage (unlike the ideal diode voltage of $v_{0}^{i}<0$) will be:

$$
\begin{aligned}
v_{0} & =v_{D}^{i}+0.7 \\
& <0.7 \mathrm{~V}
\end{aligned}
$$

NOTE: Do not check the resulting junction diode approximations. You do not assume anything about the junction diode, so there is nothing to check regarding the junction diode answers.

